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The bifurcation diagram of steady convective flow patterns inside a cubical cavity with adiabatic lateral
walls heated from below and filled with silicone oil �Pr=130� was determined for values of the Rayleigh
number �Ra� up to 1.5�105. A continuation procedure based on the Galerkin spectral method was used to
determine the steady convective solutions as a function of Ra. Bifurcations leading to either new steady or
time-dependent solutions were identified and new steady solution branches were also continued. A total of
fifteen steady solutions were tracked and the stability analysis predicted that six flow patterns were stable and
that two, three, or even four of these patterns coexisted over certain ranges of Ra in the studied domain.
Predicted flow patterns and transitions are in agreement with flow visualizations previously reported in the
literature. The variation of the Nusselt number �Nu� as a function of Pr was investigated for three of the stable
flow patterns identified: a x or y roll, a diagonal oriented roll and a pattern formed by four connected half rolls.
It was found that whereas the Nusselt changes within the region 0.71�Pr�10 it tends to an asymptotic value
with increasing Pr.
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I. INTRODUCTION

Rayleigh-Bénard convection in parallelepipedical and cy-
lindrical enclosures has been widely studied �1–3� because it
has many applications and it is the simplest multiple-scale
coupled nonlinear fluid flow problem where hydrodynamic
instabilities �4–9� and the onset and development of turbu-
lence can be investigated �10–17�. Convection starts when
the Rayleigh number reaches a critical value Rac. The drag
exerted by lateral walls in confined domains increases the
value Rac=1708 obtained for infinite parallel plates �4�. Sev-
eral numerical linear stability analysis �5,6,8,9,18� report on
the variation of Rac with respect to the width/height and
length/height aspect ratios for parallelepipedical cavities.
These studies also identify the flow pattern represented by
the eigenvector associated to the zero eigenvalue at the onset
of convection; the flow pattern at Ra slightly above the criti-
cal value is very similar to the eigenvector associated with
the zero eigenvalue.

Studies based on linear stability analysis cannot determine
which kind of flow will occur when Rac is associated to a
multiple eigenvalue, as it occurs in a cubical cavity. In this
case a bifurcation analysis is needed to determine which
combinations of the independent eigenvectors take place. In
addition, numerical bifurcation and parameter continuation
methods applied to the nonlinear governing equations are
also needed to calculate the bifurcation diagram of the flow.
Numerical and experimental studies �9,19,20� conclude that

the intrinsic symmetries of the cubical geometry yield steady
state solutions with manifold symmetries different from
those in rectangular enclosures. Hence, symmetry-breaking
bifurcations are likely to take place in the case of the cubical
geometry and, consequently, rather complex bifurcation dia-
grams can be expected.

The bifurcation diagram of steady convective flow pat-
terns in a cubical cavity with adiabatic lateral walls and filled
with air �Pr=0.71� was recently reported by Puigjaner et al.
�19�. In this work the five steady flow patterns indicated in
Fig. 1�b� were identified to be stable over some ranges of the
Rayleigh number for Ra�1.5�105. On the other hand, Pal-
larès et al. �20� experimentally observed three different
steady flow patterns in a cubical cavity with adiabatic lateral
walls filled with silicone oil �Pr=130�. The experiments were
performed in the range Ra�8�104 and several transitions
between the identified flow patterns were observed as Ra was
continuously varied from the conductive state.

The aim of the present work is to determine the bifurca-
tion diagram of steady convective flow patterns that develop
inside a cubical cavity with adiabatic lateral walls filled with
silicone oil �Pr=130� for Ra�1.5�105. Stable and unstable
steady solution branches are tracked using a parameter con-
tinuation procedure based on a Galerkin method and both
steady and Hopf bifurcation points are identified. Unstable
flow patterns are also considered because they can become
stable as a consequence of subsequent bifurcations. The evo-
lution of the spatial configuration of stable flow patterns and
their heat transport properties is studied as the Ra increases.
Predicted flow patterns and transitions are compared with
previously reported experimental results �20�. In addition,*Electronic address: fgiralt@urv.cat
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the effect of the Prandtl number on the heat transfer proper-
ties is analyzed for three stable flow patterns.

II. MATHEMATICAL FORMULATION AND NUMERICAL
METHOD

A. Governing equations

The nondimensional domain scaled by the length of the
side of the cubical cavity, L, is given by �=�− 1

2 , 1
2
�

��− 1
2 , 1

2
���− 1

2 , 1
2
�. An incompressible flow of a Newtonian

fluid is assumed and the Boussinesq model is used, i.e., all of
the fluid properties are assumed to be constant except for a
linear variation of density ��� with temperature in the buoy-
ancy term of the Navier-Stokes equations. The governing
dimensionless nonlinear equations for the velocity V

= �u ,v ,w�, the temperature departure from the motionless
conductive state, �, and the pressure, p, are

1

Pr
� �V

�t
+ Ra1/2�V · ��V� − �2V − Ra1/2�ez + �p = 0 ,

�1�

��

�t
+ Ra1/2�V · ��� − �2� − Ra1/2w = 0, �2�

�V = 0. �3�

In Eq. �1� ez denotes the unit vector in the z direction. Ve-
locity, temperature, time, and pressure are scaled according
to q0= ���	��gL
 /��1/2, 	�, L2 /
, and ��q0 /L, respectively,
where g is the acceleration of gravity, � is the coefficient of
thermal expansion, � is the kinematic viscosity, 
 is the ther-
mal diffusivity, Tc and Th are the temperatures at the top and
the bottom horizontal walls, respectively and 	�=Th-Tc. The
Rayleigh number and the Prandtl number are defined as Ra
=��	��gL3 /
� and Pr=� /
, respectively. By assuming six
rigid walls and four adiabatically insulated lateral walls the
boundary conditions may be written as

V = � = 0 at �z� = 1
2 , �4�

V =
��

�x
= 0 at �x� =

1

2
, �5�

V =
��

�y
= 0 at �y� =

1

2
. �6�

Equations �1�–�6� do not change when x and u are respec-
tively replaced by −x and −u or when y and v are respec-
tively replaced by −y and −v. Hence, any flow pattern is
equally realizable in four particular solutions depending on
the sign of the x and y vorticity components. In addition, due
to the symmetry of the cubical geometry any particular so-
lution of Eqs. �1�–�6� yields another solution that is obtained
by exchanging �x ,y ,z� and �u ,v ,w� for �y ,x ,z� and �v ,u ,w�,
respectively. Thus, once a particular solution of Eqs. �1�–�6�
has been found seven more solutions can be generated by
using the symmetry properties of equations and geometry.
Two or more of these eight particular solutions may coincide
provided that they verify some symmetry properties.

B. Numerical method

1. Continuation procedure

The continuation procedure reported by Puigjaner et al.
�19� was applied to determine the bifurcations and stability
of the steady solutions of Eqs. �1�–�3�, subject to boundary
conditions �4�–�6�, as a function of Ra. The numerical pro-
cedure, which is summarized in this section, was based on a
Galerkin spectral method with a complete set of basis func-
tions satisfying all boundary conditions. A formulation of the
velocity in terms of scalar potential functions ensured that
continuity equation was automatically fulfilled and that pres-
sure was not present in the final equations.

FIG. 1. Sketches of the bifurcation diagrams at �a� Pr=130 and
�b� Pr=0.71. Solutions that are connected by a dashed arrow repre-
sent the same flow pattern. Solutions that set in at the same bifur-
cation point are joined with a solid arc. Those flow patterns printed
in boldface are stable over certain ranges of Rayleigh numbers for
Ra�1.5�105.
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The velocity and temperature fields were approximated by
the truncated expansion

�V

�
� = �

i=1

Nx

�
j=1

Ny

�
k=1

Nz

�
s=1

4

aijk
�s�Gijk

�s� , �7�

where aijk
�s� are the unknown time-dependent coefficients, and

Gijk
�s� are the elements of a complete set of divergence-free

basis functions which are defined as products of trigonomet-
ric functions and the so-called beam-functions documented
by Harris and Reid �21�. The three subscripts and the four
superscripts in expressions �7� can be collapsed into a single
one for the sake of clarity

�V

�
� = �

l=1

N

clFl. �8�

In expression �8� coefficients cl are the unknowns, Fl repre-
sents a function Gijk

�s� for some values of i, j, k, and s, and
N=32�Nx�Ny �Nz.

Application of the Galerkin method with expansion �8�
reduces the nonlinear problem �1�–�3� to the following sys-
tem of ordinary differential equations �ODE’s�:

�
i
�Bji�Pr�

dci�t�
dt

� = f j�Pr,Ra,t,c�, j = 1, . . . ,N , �9�

with

f j�Pr,Ra,t,c� ª �
i

�Lji�Ra�ci�t��

− Ra1/2�
i,n

�Qjin�Pr�ci�t�cn�t��, j = 1, . . . ,N .

�10�

The matrices with components Lji and Qjin given by Eq.
�10� contain the coefficients of the linear and nonlinear terms
of Eq. �9�, respectively �19�. The matrix Bji, which multiplies
the time derivative terms, is called mass matrix. For steady
solutions the left hand side of Eq. �9� is zero and the problem
reduces to the set of algebraic equations

�
i

�Lji�Ra�ci� − Ra1/2�
i,n

�Qjin�Pr�cicn� = 0, j = 1, . . . ,N .

�11�

In the present work the Prandtl number is fixed �Pr=130�
and the Rayleigh number is taken as abscissa in the bifurca-
tion diagram. Thus, Ra is called the bifurcation parameter
because the change of behavior of flow patterns is studied as
a function of this parameter. Provided that at least one solu-
tion �Ra1,c1� of Eq. �11� has been determined, a predictor-
corrector parameter continuation method can be used to cal-
culate further solutions on the branch

�Ra2,c2�, �Ra3,c3�, . . . ,

until either Ra=1.5�105 is reached or the branch connects
with another tracked solution branch. The eigenvalue prob-
lem associated with the asymptotic stability of steady solu-
tions along the different solution branches in the bifurcation

diagram was solved by means of the Arnoldi method �22�.
Hence, the current analysis extends beyond the region
around the critical Rayleigh. Unstable convective flow pat-
terns must also be continued because they can become stable
as a consequence of subsequent bifurcations. However, since
the number of steady bifurcations was too great, the follow-
ing criterion was used to select which of the solutions
branches emanating at bifurcation points had to be followed.
Those convective flow patterns that set in at bifurcations
from the motionless conductive solution and that had at most
three unstable eigenvalues near the bifurcation point were
tracked using the continuation method; secondary bifurca-
tions were identified and steady flow patterns that emanated
at those bifurcations and had at most two unstable eigenval-
ues near the bifurcation point were also continued. Further
details of the numerical procedure are described in Refs.
�19,23�.

2. Accuracy assessment

Table I presents the calculated values of the Rayleigh
number at which bifurcations from three different convective
flow structures discussed in the next section occur. Conver-
gence is satisfactory for the three bifurcations chosen to test
accuracy since differences between predictions for Nt=Nx
=Ny =Nz=5 and Nt=8 are always smaller than 1.6%. The
results included in Table I also indicate that an increase from
Nt=7 to Nt=8 causes at most a 0.24% change in the bifur-
cation value Rab. One can even extrapolate the data in Table
I to Nt=� by using a law of the form a+b /Nt. The extrapo-
lated values for the three flow transitions B1→B11, B11
→B111, and B2→B21 are Rab=50412, 59868, and 73722,
respectively. The differences between the Nt=7 data and the
extrapolated values are below 2.5% in all cases.

As was previously done in Puigjaner et al. �19�, results
obtained with the Galerkin method are compared with nu-
merical solutions obtained using a fourth order accurate
finite-difference solver. Since the computational time needed
to carry out the forward integration of the nonstationary
equations grows as the Pr increases, the time-marching
finite-difference procedure �24� used in Puigjaner et al. �19�
was adapted to solve the steady equations of motion. Thus,
provided that initial approximate solutions are known, the
finite-difference solver can calculate both stable and unstable
steady solutions at any Prandtl number. The finite difference
calculations were performed at some discrete values of the
Rayleigh number. Each particular calculation was initialized

TABLE I. Convergence of the Rayleigh number at which bifur-
cations from different convective flow patterns occur as a function
of the truncation parameters Nt=Nx=Ny =Nz. The last column in-
cludes the relative differences between Nt=7 and Nt=8.

Flow
transitions Nt=5 Nt=6 Nt=7 Nt=8

	7–8

�%�

B1→B11 51601 51290 51145 51074 0.14

B11→B111 62204 61685 61383 61238 0.24

B2→B21 75626 76132 75636 75557 0.10
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from the velocity and temperature fields given by the
Galerkin-based continuation method. Table II shows that the
maximum difference in Nusselt number between Galerkin
and finite difference solutions is 2.3% at the highest Rayleigh
number studied, i.e., Ra=1.5�105.

III. RESULTS AND DISCUSSION

A. Bifurcation diagram

1. Solutions and symmetries

Bifurcation diagrams turn out to be a very useful graphi-
cal tool to show the domains of existence, stability character,
and bifurcations of the multiple solutions that may coexist as
a function of a parameter. To facilitate the comparison of the
current bifurcation diagram with that reported at Pr=0.71
�19�, both are summarized in Fig. 1. The motionless conduc-
tive state is denoted by C, bifurcations from the conductive
state are referred to as primary bifurcations and the term
secondary bifurcations refers to bifurcations from convective
flow solutions. Convective flow patterns that set in at a pri-
mary bifurcation are labeled Bi and flow patterns developed
at bifurcation values of Bi are denoted Bij. Thus, any bifur-
cation adds a new subscript to the parent name. The value of
the more external subscript identifies the order of appearance
of the corresponding bifurcation along the parent branch.
Note that two different names are assigned to those flow
patterns that connect two different bifurcation branches or
two different bifurcation values of the same branch. In these
cases both possible names are joined by dashed arrows in
Fig. 1. The names of the flow patterns that are stable over
certain ranges of Ra in the region Ra�1.5�105 are printed
in boldface. A brief description of the spatial configuration of
each parent flow pattern is also included in this figure.

The detailed bifurcation diagram for a cubical cavity with
adiabatic lateral walls filled with silicone oil �Pr=130� is
presented in Fig. 2. This figure depicts the branches of steady
solutions in the �10−3Ra,Nu−0.01Ra1/2� space. The variable
Nu−0.01Ra1/2 is used as ordinate instead of the Nusselt
number Nu for the sake of clarity. The Nusselt number Nu is
the dimensionless convective heat transport coefficient and
was calculated as

Nu = 1 − 	
−0.5

0.5 	
−0.5

0.5 ��

�z
�x,y,− 0.5�dxdy . �12�

Stable flow patterns are depicted with solid lines in Fig. 2.
Unstable flow patterns are represented by dashed lines when
they have exactly one unstable eigenmode and by dotted
lines when they have two or more unstable eigenmodes.
Steady bifurcations are represented by filled circles when the
resulting flow patterns have been tracked. Otherwise, steady

TABLE II. Nusselt numbers calculated by the Galerkin continu-
ation method and the relative differences with respect the Nusselt
number obtained by the finite-difference solver �24�.

Flow
pattern 10−3 Ra Nu 	 �%� 10−3 Ra Nu 	 �%�

B1 50 3.099 0.1 150 4.135 0.8

B2 50 3.257 0.2 150 4.345 1.0

B3 50 3.518 0.1 150 5.063 1.3

B4 50 3.458 1.1 150 5.220 2.3

B11 100 4.303 1.2 150 4.828 1.8

B21 80 3.672 0.4 150 4.967 1.5

B31 10 1.693 0.1 150 4.260 1.1

B32 10 1.693 0.1 150 4.646 0.9

B41 12 1.578 0.1 150 4.629 1.9

B42 36 3.027 0.5 106 4.642 2.0

B111 62 3.531 0.5 138 4.109 2.1

B212 120 4.410 1.3

B311 23 2.327 0.1 150 4.099 1.3

B321 18 2.193 0.1 150 4.494 0.3

B322 100 4.058 0.6 150 4.550 1.0

FIG. 2. �a� and �b� Bifurcation diagram at Pr=130. For the sake
of clarity the bifurcation diagram is presented in two plots. Stable
flow patterns are depicted with solid lines. Unstable flow patterns
are represented by dashed lines when they have exactly one un-
stable eigenmode and by dotted lines when they have two or more
unstable eigenmodes. Steady bifurcations are represented by filled
circles when the resulting flow patterns have been tracked. Other-
wise, steady bifurcations are represented by filled triangles. Hopf
bifurcations and turning points are marked with hollow circles and
hollow squares, respectively. Additional zooms of smaller domains
are included.
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bifurcations are represented by filled triangles. Hopf bifurca-
tions and turning points are marked with hollow circles and
hollow squares, respectively.

The ranges of Ra where solutions exist and the ranges of
Ra where they are stable are summarized in Table III. Since
the symmetry properties of a flow pattern are useful to un-
derstand its spatial configuration, bases of the groups of sym-
metries of each steady flow pattern have been identified and
included in Table III. Due to the symmetry properties of the
governing equations and of the geometry, any flow pattern
can be realized in eight different particular solutions �see
Sec. III A for details�. However, only one particular solution
of each flow pattern is discussed in the present work. Thus,
the symmetry groups for the flow patterns listed in Table III
correspond to just one particular solution.

The elements of the groups of symmetries in Table III are
rotations around an axis, reflections with respect to a plane or
combinations of both; they can be represented with a 3�3
matrix. Thus, if S belongs to the symmetry group of a flow
pattern denoted as B then the transformations SX and SV,
with X= �x ,y ,z�, V= �u ,v ,w�, and S a 3�3 matrix, do not
change the flow pattern B. In the present work Sx, Sy, Sd+

,
and Sd−

denote reflections with respect to the x=0, y=0, x
=y, and x=−y planes, respectively. Their matrix representa-
tions are

Sx = 
− 1 0 0

0 1 0

0 0 1
�, Sy = 
1 0 0

0 − 1 0

0 0 1
� ,

Sd−
= 
 0 − 1 0

− 1 0 0

0 0 1
�, Sd+

= 
0 1 0

1 0 0

0 0 1
� . �13�

The symmetry with respect to the origin and a rotation of
angle 
 around the y axis are respectively denoted as −Id
and −Sy =−IdSy. They are represented by the matrices

− Id = 
− 1 0 0

0 − 1 0

0 0 − 1
� and − Sy = 
− 1 0 0

0 1 0

0 0 − 1
� .

�14�

The comparison of the present bifurcation diagram with
that reported by Puigjaner et al. �19� for Pr=0.71 focuses
mainly on those solution branches which are stable over cer-
tain ranges of Rayleigh number for Ra�1.5�105. The only
flow patterns connected with the conductive solution that are
stable over certain ranges of Ra at Pr=0.71, are those previ-
ously denoted as S1, S5, and S7 �19� which correspond to the
current B1, B3, and B11 solutions, respectively. The bifurca-
tion diagram and the variation of the real part of the leading
eigenvalues respectively depicted in Figs. 2 and 3 show that
for Pr=130 in addition to the B1, B3, and B11 solutions, three
more flow patterns labeled as B2, B21, and B111 are also stable
over certain ranges of Ra. Two other stable solutions labeled
as A1 and A11 in Fig. 1�b�, previously reported as S8 and S10
flow patterns �19�, were identified at Pr=0.71. To investigate
the existence of the A1 isolated branch at Pr=130 a continu-
ation procedure that takes Pr as a parameter was applied at a
fixed Ra=1.5�105. It should be noted that since the A1 so-

TABLE III. Summary of the range of existence, the stability character and the symmetry properties of all
solutions identified in the bifurcation diagram depicted in Fig. 2. Sx, Sy, Sd+

, Sd−
, −Id, and −Sy are matrix

representations of elements of the groups of symmetries and are defined in expressions �13� and �14�. The six
flow patterns printed in boldface are stable over certain ranges of Rayleigh number for Ra�1.5�105.

Name
Range of
existence

Range of
stability

Generators of the
symmetry group

B1 3389– 3389–51155 Sy, −Sy

B11 51155– 51155–61383 Sy

B111 61383–140028 61383–122500

B2 3389– 75636– Sd−
, −Id

B21 75636– 108767–129098 −Id

B212 108767–129098

B3 5904– 9857– −Sy, Sd+
, Sd−

B31 9857– Sd−

B311 23844–

B32 9857– −Sy

B321 17613–

B322 98142–

B4 7458– Sx, Sy, Sd+
, Sd−

B41 11781– Sd+
, Sd−

B42 36113–106314 Sx, Sy
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lution branch at Pr=0.71 presents a turning point at Ra
=76 800, two different realizations of this flow pattern exist
over the range 76 800�Ra�1.5�105. The evolution of the
Nusselt number as a function of the Pr is depicted in Fig. 4
for the two realizations of the A1 solution at Ra=1.5�105.
This figure shows that at Pr=2.476 the two flow patterns
have the same Nu. Indeed, the two flow patterns coincide at
this point, implying that at Pr=2.476 the turning point of the
A1 solution occurs at Ra=1.5�105. This result suggests that
for Pr�2.476 the A1 isolated branch is shifted to the region
Ra�1.5�105, explaining why the A1 solution was not iden-
tified at Pr=130.

2. Primary bifurcations and flow patterns

Linearization of Eq. �11� around the motionless conduc-
tive solution shows that primary bifurcations are independent

of the Prandtl number. Hence, the current predicted values of
Ra where the first three primary bifurcations occur, namely
Rac=3389, Rab=5902, and Rab=7458, coincide with those
previously reported at Pr=0.71 �19�. These values are in
good agreement with the values Rac=3388.5, Rab=5901, and
Rab=7456 reported by Mizushima and Nakamura �9�. More-
over, the critical Rayleigh number Rac=3446 reported by
Catton �6� does not differ by more than 2% from the present
value. These previous studies �6,9� predicted that the eigen-
vector associated to the critical value was of the x or y roll
type. However, they did not take into account that the critical
value corresponds to a double eigenvalue and that, conse-
quently, any linear combination of the two independent
eigenvectors, i.e., of one x roll and one y roll, is also an
eigenvector of the linear stability problem. When all possible
combinations were considered as starting point to calculate
possible emanating branches of solutions at this critical
value, only an initially stable solution, a x or y roll denoted
as B1 and an initially unstable solution, a diagonal roll de-
noted as B2, were identified in the present work. It is worth
noting that present results predict that the initially unstable
B2 solution becomes stable at Ra=75 636. Figures 5�a� and
5�b� show that the B1 solution is a single y roll. The B2
solution is also a single roll, but with its axis of rotation
aligned in the negative diagonal direction, as depicted in
Figs. 5�c� and 5�d�. It is worth mentioning that in the context
of Table III a rotation of 
 around x=−y can be expressed as
−Sd−

=−IdSd−
. The x roll and the roll aligned in the positive

diagonal direction, are obviously equally realizable because
of the symmetries of the cubical geometry �see Sec. III A for
a detailed discussion of the possible realizations of a flow
pattern�.

Flow patterns that set in at primary bifurcations are, at
values of Ra close to the bifurcation point, very similar to the
eigenvector associated with the zero eigenvalue of the linear-
ized equations. Thus, since primary bifurcations are indepen-
dent of Pr, current solutions B1, B2, B3, and B4, which set in
at primary bifurcations, correspond to flow structures S1, S2,
S5, and S4 previously reported at Pr=0.71 �19�. The B1 flow
pattern originates in the shape of one y roll. Vertical velocity
contours at the horizontal midplane z=0 for this flow pattern
at Ra=3400 are depicted in Fig. 5�a�. This y roll configura-
tion is better portrayed following the method reported by
Jeong and Hussain �25�. These authors proposed an identifi-
cation of a vortex in terms of isosurfaces of the second larg-
est eigenvalue of the symmetric tensor S2+�2, being S and
� the symmetric and antisymmetric parts, respectively, of
the velocity gradient tensor. Hereinafter, this eigenvalue will
be referred to as �2 and surfaces of �2=0 will be depicted.
Figure 5�b� shows that the y roll configuration of B1 is well
characterized when the surface of �2=0 is depicted. The B2
flow pattern has also a roll configuration when it develops,
but in this case the roll is aligned along the diagonal, as
shown in Figs. 5�c� and 5�d�. Figures 6�a� and 6�b� shows
that at values of Ra slightly above the bifurcation point, the
B3 flow pattern can be understood as four half rolls which are
connected between themselves. The toroidal configuration of
the B4 solution is shown in Figs. 6�c� and 6�d�.

Figure 7 shows that at Ra=1.5�105 the spatial configu-
rations of the B1 �unstable�, B2 �stable�, B3 �stable�, and B4

FIG. 3. Variation of the real part of the leading eigenvalue with
Ra for those flow patterns that are stable over certain ranges of Ra.

FIG. 4. Variation of the Nusselt number as a function of the
Prandtl number for the two branches of the A1 flow pattern at Ra
=1.5�105. Stable and unstable flow patterns are plotted with solid
and dashed lines, respectively.
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�unstable� flow patterns become more complex. Figure 7�a�
shows that the unstable B1 solution at Ra=1.5�105 keeps
the y roll configuration, but with four pairs of secondary rolls
aligned in the x direction. Two of these pairs arise near the
top wall, while the other two symmetrical pairs develop near
the bottom wall. In addition, two pairs of weak secondary
vortical structures, which arise at two diagonally opposing
edges of the cavity, are portrayed in Fig. 7�a�. Projections of
velocity vectors into vertical planes with y constant, not
shown here, reveal that whereas these projections are almost
circular at Ra=3500, they tend to become rectangular with a
slight elongation in the x=z direction at Ra=1.5�105. Fig-
ures 7�b� and 8�a� show that the diagonal roll configuration

of the stable B2 solution elongates in the negative diagonal
direction x=−y at Ra=1.5�105. Figure 7�b� also reveals that
the B2 flow pattern has developed secondary vortical struc-
tures parallel to the horizontal edges of the cavity. The sec-
ondary recirculations near the four corners shown in Fig.
8�b� are the projection into the vertical diagonal plane x=y of
these secondary vortical structures. The stable B3 solution
depicted in Fig. 7�c� displays vortical structures parallel to
the horizontal edges of the cavity which are superimposed
onto its characteristic four half connected rolls spatial struc-
ture. Finally, Fig. 7�d� shows that the toroidal shape of the
unstable B4 solution, with silicone oil raising near the lateral
walls and sinking through the central part of the cavity, is

FIG. 5. B1 and B2 flow patterns at Ra=3400. Vertical velocity contours at the horizontal midplane z=0 for the �a� B1 and �c� B2 flow
patterns. Positive and negative values of the velocity are plotted with solid and dashed lines, respectively. Surfaces of �2=0 for the �b� B1

and �d� B2 flow patterns. The gray levels are scaled with the value of the vertical velocity component.
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only kept near the bottom wall. In the rest of the cavity the
flow raising along the central region tends to recirculate to-
wards the four vertical edges before sinking.

3. Secondary bifurcations and flow patterns

Figure 2�b� shows that the stability character of the B3
flow pattern at Pr=130 is analogous to that reported at Pr
=0.71 �19�. At both Prandtl numbers the B3 solution is un-
stable when it originates at Rab=5904 with a positive double
eigenvalue. This double eigenvalue becomes negative, i.e.,

the B3 solution becomes stable, at Rab=9857 �Pr=130� and
Rab=8278 �Pr=0.71�. Once stable, the B3 solution remains
so for values of Ra up to at least 1.5�105 for both Prandtl
numbers. Figure 2�b� also shows that two additional unstable
flow patterns, denoted as B31 and B32, develop at the bifur-
cation point where the B3 flow pattern becomes stable. Both
solutions have lost two of the symmetries of the B3 pattern,
as indicated in Table III. Flow patterns B31, B32 and those
that appear at their subsequent bifurcations remain unstable
over the whole range of Ra investigated.

FIG. 6. B3 and B4 flow patterns at values of Ra slightly above the bifurcation points where they set in. Vertical velocity contours at the
horizontal midplane z=0 for the �a� B3 at Ra=5950 and �c� B4 at Ra=7600 flow patterns. Positive and negative velocity values are plotted
with solid and dashed lines, respectively. Surfaces of �2=0 for the �b� B3 and �d� B4 flow patterns. The gray levels are scaled with the value
of the vertical velocity component.
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The B1 solution is stable when it sets in and remains
stable until a symmetry-breaking bifurcation takes place at
Rab=51 155, as shown in Fig. 2�a� and Table III. At this
bifurcation point the B1 flow pattern becomes unstable and a
new stable flow pattern named B11 develops. This bifurcation
is analogous to that previously reported for Pr=0.71 at Rab
=66 200 �19�. Figure 9�a� shows that the B11 flow pattern is
the result of the superposition into the main y roll of two
relatively strong counterrotating secondary vortices near the
top cavity wall. This pair of secondary vortices is better por-
trayed in Fig. 9�b�, where isosurfaces of �2=0 are depicted.
Unlike the Pr=0.71 case, the B11 flow pattern does not re-
main stable up to Ra=1.5�105, but it becomes unstable at
Rab=61 383 and remains so thereafter. At the symmetry-
breaking bifurcation point where the B11 flow pattern be-
comes unstable, an initially stable flow pattern denoted as

B111 develops. The B111 flow pattern becomes unstable as a
consequence of a Hopf bifurcation occurring at Rab
=122 500.

In contrast to the results reported at Pr=0.71 �19� which
predicted that the B2 flow pattern was unstable over the
whole region Ra�1.5�105, present results at Pr=130 pre-
dict that the initially unstable B2 flow pattern becomes stable
at Rab=75 636 and remains stable up to at least Ra=1.5
�105. Figure 2�a� shows that solutions B1 and B2 are con-
nected through solution branches that emanate at their sec-
ondary bifurcations. Specifically the B11 and the B21 solu-
tions are connected through the B111 solution. The B21 flow
pattern, which sets in as an unstable solution when the B2
flow pattern becomes stable at Rab=75 636, is stable within
the range 108 767�Ra�129 098. Hence, as the three flow
patterns, B11, B21, and B111 involved in this connection are

FIG. 7. Surfaces of �2=0 for the �a� B1, �b� B2, �c� B3, and �d� B4 flow patterns at Ra=1.5�105. The gray �color� levels are scaled with
the value of the vertical velocity component.
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stable for certain ranges of Ra in the region Ra�1.5�105, it
is interesting to analyze the evolution of these flow patterns
along the solution branches.

Figures 10�a� and 10�b� show that near the bifurcation
point where the B111 sets in the flow pattern consists of a
main y roll with two superimposed secondary vortices that
span the top cavity wall. Therefore, B111 has a spatial con-
figuration similar to that of solution B11 plotted in Figs. 9�a�
and 9�b�, except for the loss of the reflection symmetry with
respect to the plane y=0, denoted as Sy in Table III. Figures
10�c� and 10�d� show that the main roll of B111 tends to align
diagonally as Ra is increased. These figures also show that
the B111 flow pattern has no symmetry element. After the
turning point at Rab=140 028 the main roll of the B111 solu-
tion tends to adopt again the characteristic alignment of the y
roll flow pattern B1. Actually, Figs. 10�e� and 10�f� show that
back at Ra=1.22�105, near the connection point to the B21
solution, the B111 flow pattern is mainly an y roll with sec-
ondary circulations near the edges of the cavity. These sec-
ondary circulations, which are also present in the B1 solution,
are stronger at the two edges in the diagonal direction y=z of
the B111 flow pattern depicted in Figs. 10�e� and 10�f�. On the
other hand, near the bifurcation value Rab=75 600 where the
B21 solution develops, this solution is quite similar to the
diagonal-roll flow structure B2, except for the lost of the
diagonal reflection plane. As Ra is increased the main roll of
the B21 solution tends to align in the y direction. Then, after
two turning points that occur at Rab=141 840 and Rab
=120 150, the B21 and the B111 solutions connect through a

bifurcation point. Near this bifurcation point the B21 flow
pattern is analogous to that of the B111 solution in Figs. 10�e�
and 10�f�. Further along the solution branch, the B21 flow
pattern becomes stable at Rab=129 098 and remains stable
up to Rab=108 767.

Figure 11�a� depicts the surface �2=0 for the B21 flow
pattern at Ra=1.22�103 within the region where it is stable.
This figure shows that B21 has six secondary vortical struc-
tures aligned in the x direction. Three of these secondary
vortices arise near the top cavity wall, and the other three are
the corresponding symmetrical ones which develop near the

FIG. 8. The diagonal oriented B2 flow pattern at Ra=1.5�105.
Vertical velocity contours and velocity vectors at the vertical diag-
onal planes x=−y �a� and x=y �b�. Positive and negative velocity
values are plotted with solid and dashed lines, respectively.

FIG. 9. The B11 flow pattern at Ra=6�104. �a� Contours of the
velocity component normal to the vertical plane x=0, together with
the projected velocity vectors. Positive and negative velocity values
are plotted with solid and dashed lines, respectively. �b� Surface of
�2=0. The gray levels are scaled with the value of the vertical
velocity component.
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FIG. 10. The B111 flow pattern at �a� and �b� Ra=7�104; �c� and �d� Ra=1.22�105; �e� and �f� back at Ra=1.22�105 near the
connection with the solution B21. �a�, �c�, and �e� Contours of the velocity component normal to the vertical plane x=0, together with the
projected velocity vectors. Positive and negative velocity values are plotted with solid and dashed lines, respectively. �b�, �d�, and �f�
Surfaces of �2=0. The gray levels are scaled with the value of the vertical velocity component.
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bottom cavity wall. At Ra=1.5�105 the main roll of the B21
solution has evolved to a y roll and the secondary vortices
that span the top and bottom walls align with vorticity per-
pendicular to that of the main roll, as shown in Figs. 11�b�
and 11�c�. Thus, present results reveal that the evolution of
the B21 with Rayleigh number is rather complex. This is
clearly reflected by variations in the Nusselt number in the
bifurcation diagram. Despite the important change experi-
enced by the B21 flow pattern along the solution branch it
does not lose the symmetry with respect to the origin repre-
sented by −Id in Table III. This is clearly reflected in Figs.
11�b� and 11�c�. Note that due to the presence of several
turning points in the B21 solution branch, three, five or even
seven realizations of the flow pattern B21 may be possible
over certain ranges of Rayleigh number in the region Ra
�1.5�105.

B. Comparison with experiments

Pallarès et al. �20� used a particle image velocimetry
�PIV� visualization technique to characterize the convective
flow patterns in a cubical cavity filled with silicone oil
�Pr=130�. Only steady flow patterns were observed by these
authors over the whole range of experimental conditions, 5
�103�Ra�8�104, except over the initial transitory start-
up period of the experiments. These authors measured ve-
locities in two vertical planes and considered that a steady
flow pattern was obtained when velocity fields recorded at
consecutive times differ only by the experimental error. In
the case of adiabatic lateral walls the three stable steady flow
patterns reported by Pallarès et al. �20� correspond to the
current B1, B2, and B11. The unstable toroidal flow pattern B4
was experimentally identified �20� as a transitional state dur-
ing the startup of the experimental apparatus that eventually
evolved to the diagonal roll B2. This diagonal roll was the the
flow structure observed by these authors for Ra�104, as
shown in Fig. 12�a�. This figure also shows that the diagonal
roll B2 evolved experimentally to the single roll B1 in the
range 104�Ra�3�104. When Ra was increased from Ra
=5�104 to Ra=6�104 the single roll B1 evolved to the B11

FIG. 11. The B21 flow pattern. Surfaces of �2=0 at �a� Ra
=1.2�105 within the region where it is stable and �b� Ra=1.5
�105. The gray levels are scaled with the value of the vertical
velocity component. �c� Contours of the velocity component normal
to the vertical plane x=0, together with the projected velocity map
at Ra=1.5�105. Positive and negative velocity values are plotted
with solid and dashed lines, respectively.

FIG. 12. �a� Sequence of flow transitions from the conductive
state observed experimentally by Pallarès et al. �20� when the Ra
was increased and decreased stepwise �the experimental range of
Ra where each transition occurred is indicated by gray strips�. �b�
Stable flow patterns identified by the current continuation method
following the branch of B1. The dashed line at Ra=75 636 indicates
that at this value B2 becomes stable and therefore both B111 and B2

are stable within the region 75 636�Ra�8�104.
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flow pattern. Beyond Ra=7�104 the flow pattern B11 was
observed by Pallarès et al. �20� to evolve to the diagonal roll
B2. Furthermore, these authors �20� reported that a decrease
in Rayleigh number reversed the sequence in the pattern for-
mation with a hysteresis effect that shifted transitions to
lower values of the Rayleigh number, as illustrated also by
Fig. 12�a�.

The present study predicts that at the smallest primary
bifurcation �Rac=3389� both the single roll B1 and the diag-
onal roll B2 flow patterns develop. Figures 2 and 3 show that
whereas the B1 flow pattern is stable when it sets in and
remains stable until a symmetry-breaking bifurcation takes
place at Rab=51 155, the B2 flow pattern sets in as an un-
stable solution and remains unstable for values of Ra up to
Rab=75 636. The fact that the initially unstable flow pattern
B2 was found experimentally by Pallarès et al. �20� for Ray-
leigh numbers up to 104 is in disagreement with current re-
sults. Notwithstanding, the stability analysis for the B2 solu-
tion indicates that the leading eigenvalue has a positive real
part which is very close to zero at slightly supercritical Ra
values, as shown in Fig. 3. This suggests that any small
imperfection of the experimental setup, i.e., any small per-
turbation of the dynamical system, might have caused this
leading eigenvalue to become negative. It is worth noting
that the real part of the leading eigenvalue plotted in Fig. 3 is
a dimensionless quantity. Taking into account the properties
of silicone oil and the dimensions �12.5�12.5�12.5 mm�
of the experimental cavity �20� this dimensionless quantity
has to be divided approximately by 1600 to express it in
units of s−1. The effect on the flow of a small tilt in the cavity
vertical setup has been further investigated by means of an
explicit time-marching procedure based on a finite-difference
solver �24�. As the computational time needed by a time-
marching procedure grows considerably when Pr is in-
creased, time-marching calculations were carried out in a
cavity filled with air, i.e., Pr=0.71. A cavity rotated 0.1°
around x=y was assumed. The value 0.1° was chosen be-
cause it is the maximum deviation in the angle with respect
the horizontal plane allowed by the experimental arrange-
ment �20�. First, at Ra=3500, the time marching procedure
was initialized with a motionless field and a linear tempera-
ture distribution in the z direction. It was found that the flow
evolved towards the B2 flow pattern. Then subsequent time-
marching calculation were initialized from a previous con-
vective solution at a different value of Ra. Whereas the B2
solution was also found when Ra was increased up to Ra
=5�103, an increment from Ra=5�103 to Ra=104 caused
the flow to evolve towards the B1 flow pattern. However, the
transition from B1 to B2 occurred within the range 3500
�Ra�5�103 when the Rayleigh number was decreased.
These results suggest that a small tilt in the cavity vertical
setup might be sufficient to stabilize the diagonal roll flow
pattern B2, and explaining why this solution was found ex-
perimentally at low values of the Rayleigh number.

Figure 12 shows that the symmetry-breaking bifurcation
of the B1 solution leading to the B11 solution predicted in the
current work is in reasonable agreement with the experimen-
tally observed �20� transition between these two flow struc-
tures. Figures 2 and 12�b� show that this solution B11 is only
stable up to Ra=61 383 where a new symmetry-breaking bi-

furcation occurs yielding the initially stable B111 flow pat-
tern. The B111 solution becomes unstable as a consequence of
a Hopf bifurcation at Rab=122 500. The fact that this transi-
tion between B11 and B111 was not experimentally observed
�20� may be due to the difficulty in differentiating between
both spatial configuration for values of Ra near the
symmetry-breaking bifurcation point, as shown in Figs. 9,
10�a�, and 10�b�. The experimental range of stability of B2
�73�103�Ra�8�104� reported by Pallarès et al. �20� is
consistent with current results, which predict this stabiliza-
tion at Rab=75 636.

The other numerically predicted stable flow pattern B3
was not experimentally observed because the basin of attrac-
tion of B3 does not overlap with the initial conditions used in
the experiment, which follow the branch of the primary bi-
furcation yielding the B1 solution �see Fig. 2�a��.

C. Effect of the Prandtl number

Comparison of the current bifurcation diagram at Pr
=130, presented in Fig. 2, with the one previously reported at
Pr=0.71 �19�, suggests that the evolution of the flow patterns
and their subsequent bifurcations with Ra depend on the
Prandtl number. Accordingly, the B1, B2, B3, and B4 flow
patterns at Ra=1.5�105 and Pr=130, depicted in Fig. 7, are
considerably different from the corresponding ones shown in
Fig. 13 for Pr=0.71. A comparison between these two plots
reveals differences in the shape of the main convection cells
as well as in the number and location of secondary rolls. The
most striking difference is observed for the B3 patterns de-
picted in Figs. 7�c� and 13�c�. The typical four half con-
nected rolls structure observed in Fig. 6�b� for the B3 pattern
at Ra=5950 is basically preserved in Fig. 7�c� at Ra=1.5
�105 for Pr=130. Although the four half connected rolls
configuration of B3 is kept over a wide range of Ra for Pr
=130 it is hardly recognizable in Fig. 13�c� for Pr=0.71.

Since differences in the spatial configuration of flow pat-
terns should have an effect on the Nusselt number, the varia-
tion of Nu with Pr was analyzed. Figure 14 depicts the varia-
tion of Nusselt number with Pr over the range 0.71�Pr
�130 for the flow patterns B1, B2, and B3 at six values of Ra.
Significant changes of the predicted values of Nu with Pr are
observed in the region 0.71�Pr�10 for the three flow pat-
terns and all values of Ra investigated. Variations in Nu are
clearly strongest for the B3 pattern in Fig. 14�c� and much
weaker for the B1 flow pattern in Fig. 14�a�. Also, the pre-
dicted variation of Nu with Pr tend to be, for any given flow
pattern, more pronounced at higher Ra.

It is remarkable that Nu increases slightly with Pr in the
region 0.71�Pr�10 for the B1 flow pattern while it de-
creases for B2 and B3. This different behavior may be related
to the distinct action of secondary motions. Flow patterns in
Figs. 13�b� and 13�c�, corresponding to B2 and B3 at Ra
=1.5�105 and Pr=0.71, display motions near the edges and
corners of the cavity that are stronger than those for Pr
=130 in Figs. 7�b� and 7�c�. The opposite argument is valid
for the case of B1. The flow pattern in Fig. 7�a� at Pr=130
shows two small secondary rolls on top of the main cell
which are not present in Fig. 13�a� for Pr=0.71. Thus, the
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relative increase or decrease of Nu with Pr may depend on
the particular way in which each flow pattern, whose motion
becomes progressively stronger as Ra is increased, adapts to
the constraints imposed by the bounding walls.

The Nusselt number changes weakly with increasing Pr
for Pr�30, tending to an asymptotic value in the limit Pr
→�. The asymptotic value, marked with an arrow in Fig. 14,
corresponds to the Nusselt number obtained when Pr−1 is
replaced by zero in the governing equations �1� and �2�,
which is equivalent to consider Pr=�. From a mathematical
point of view this asymptotic behavior can be explained by
the fact that the inverse of the Prandtl number is a factor that
multiplies the nonlinear terms in Eq. �1�. Hence, an increase
in Prandtl number decreases the effects of the nonlinear
terms, which for a fixed value of Ra can be seen as pertur-
bation effects in Eq. �1�. It is also worth mentioning that the
theoretical model recently proposed by Grossmann and

Lohse �13,26� for the scaling of Rayleigh-Bénard convection
postulates the existence of a very large Prandtl number re-
gime where Nu is independent of Pr.

IV. CONCLUSIONS

A continuation procedure based on a Galerkin spectral
method has been used to determine the bifurcation diagram
of steady flow patterns inside a cubical cavity heated from
below for values of the Rayleigh number up to 1.5�105. The
cavity is filled with silicone oil �Pr=130� and the four lateral
walls are assumed to be adiabatic. Fifteen solution branches
have been tracked and visualized in terms of the variation of
Nusselt number with Ra. The stability analysis predicts that
six steady flow patterns �B1, B11, B111, B2, B21, and B3� are
stable over certain ranges of Ra in the region Ra�1.5
�105. Present results reveal the importance of taking into

FIG. 13. Surfaces of �2=0 for the flow patterns �a� B1, �b� B2, �c� B3, and �d� B4 at Ra=1.5�105 and Pr=0.71. The gray levels are scaled
with the value of the vertical velocity component.
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account unstable convective flow patterns because they can
become stable as a consequence of subsequent bifurcations.

On the other hand, several Hopf bifurcations have been
identified within the region Ra�9�104. In particular, the
B111 flow pattern loses its stability through a Hopf bifurca-
tion at approximately Ra=122 500. This suggests that time-
dependent flow patterns are likely to occur beyond Ra=105.
Future research will be oriented to further develop the
present method in order to investigate both steady and time-
dependent flow patterns over a wider range of Rayleigh num-
bers.

The symmetry properties of flow patterns have been use-
ful for analyzing their spatial configuration. Some of the flow
patterns identified in the present work evolve to rather com-
plex spatial configurations as the Rayleigh number increases.
In general, all flow patterns tend to develop secondary rolls
as the Rayleigh number increases. Note that in a recent work
reported by Sun et al. �16� on turbulent Rayleigh-Bénard
convection in a cylindrical cell of aspect ratio one secondary
rolls were observed experimentally. It has been checked that
an important change in the spatial configuration of a flow
pattern along a solution branch is clearly reflected as a sig-
nificant change in the corresponding heat transfer at the bot-
tom and top cavity walls.

Present results are in reasonable agreement with the ex-
perimental results reported by Pallarès et al. �20�. Most of
the experimental flow transitions between different steady
flow patterns observed by these authors over the region Ra
�8�104 are explained by current results.

Bifurcation diagrams depend strongly on the Prandtl num-
ber and the evolution of flow patterns as the Rayleigh num-
ber increases is also rather dependent on Pr. The variation of
the Nusselt number Nu with Pr reveals that heat transfer rates
for any of the three stable solutions that set in at bifurcations
from the conductive state change significantly within the re-
gion 0.71�Pr�10, tending to an asymptotic value beyond.
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